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░ 1. Introduction 

The development of living beings manifests itself differently in different processes. This is influenced by fertility, 

growth, personality, death of individuals, external environment and the like. Taking these circumstances into 

account, a mathematical model of the population will be constructed. 

Changes in the number of the population make up its dynamics. Population dynamics is part of mathematical 

biology and is a “mathematical polygon” aimed at determining the state of a population over time. Because 

mathematical modeling makes it possible to obtain complete information about the process being studied and to 

draw a conclusion about its growth or decline. 

In general, mathematical models of processes consist of systems of simple differential equations and inequalities, 

with the help of their solutions; it is possible to predict the change in the influence of one or another factor. For 

example, if the population process is represented by systems of ordinary differential equations, the necessary 

results can be obtained by qualitative analysis of such equations. In particular, without finding a solution to a 

system of equations, it is possible to have accurate information about its trajectory and similar properties [1]. 

Quantitative dynamics of the population are studied in mathematical models in connection with its gender and age 

structure, the influence of the external environment, the genetic form under the influence of various factors of 

evolution, and the results of human activity. There are many dynamic processes in the inanimate world. They are 

also easy to model. But it is relatively difficult to create dynamic models for living organisms. Therefore, static 

models are used before creating dynamic models, that is, a number of factors are idealized, some are not taken into 

account. Examples of static models are trying to explain the arrangement of plant leaves or the structure of mollusk 

shells using the pattern of spiral lines. 

Since the population is variable, scientists are interested not only in a certain change in its number and density, but 

also in what factors it changes, that is, its dynamics. A dynamic description of the population is defined by births, 

AB ST R ACT  

This article provides brief information about dynamic systems. We find analytical and numerical solutions, and fixed points of the continuous-time 

generalized quadratic stochastic Volterra operator (dynamical system). We use the theory of ordinary differential equations for an analytical solution 

to the dynamic system. The eigenvalues of the parameters indicate the origin of the solution of the previously analyzed dynamical system. Our results 

extend and improve the corresponding recent results in the literature numerically and analytically. Moreover, we use Runge-Kutta method for finding 

our results.  

Keywords: Quadratic Stochastic Operators; Dynamic System; Numerical Solution; Analytical Solution; Fixed Point. 

https://creativecommons.org/licenses/by-sa/4.0/


Irish Interdisciplinary Journal of Science & Research (IIJSR)  

Volume 7, Issue 4, Pages 77-86, October-December 2023 

ISSN: 2582-3981                                                                [78]                                                                             

productivity, deaths, emigration and immigration, among others. True populations have different rates of 

reproduction and mortality in different groups. For example, insects lay eggs and their enemies kill the larvae, in 

addition, they are influenced by metabolic products in the environment, cannibalism and poisoning, age stages and 

their intensity. 

Analysis of population dynamics, in turn, is important both theoretically and practically. Methods of combating the 

reproduction of insect pests (releasing infertile male insects, pheromone traps, etc.) are aimed at creating a certain 

imbalance in the population structure, leading to both a slowdown and disruption of their reproduction. These 

questions are among the most pressing in epidemiology. 

░ 2. Analysis of Literature  

We will present an analysis of scientific research conducted by the author and the results obtained to show the 

difference between the issue under study and other issues. To present the analysis of scientific research, we provide 

information about scientific articles carried out mainly on dynamic continuous-time systems. 

In work [2], to study the control of ovulation in mammals, for example, to regulate a given number of mature eggs, 

a model of differential equations is used. 

When studying the bifurcation properties of the predator-prey system with shelter and permanent prey, [3] uses 

systems of ordinary differential equations. It is established that the number of equilibrium and the properties of the 

system will change due to refuge and harvesting, and also the rich dynamics of the system compared to the system 

without shelter and harvesting are obtained. 

The book [4] outlines the theories of dynamical systems, in particular the theory of dynamical systems with 

continuous time. For example, mathematical models of predator-prey of Lotka-Volterra and Gause, the spread of 

Kermack-Makkendrick epidemics, models of the evolution of gene families, etc.  

In [5], the delayed Holling-Tanner predator-prey system with a functional response was analyzed. The existence of 

the Hopf bifurcation is investigated. By deriving the equation describing the flow on the central manifold, the 

direction of the Hopf bifurcation and its stability are studied. Numerical solutions are presented for comparison 

with analytical ones. 

In [6], the Holling-Tanner system is studied. Using the construction of the Lyapunov function, sufficient conditions 

for the global stability of positive equilibrium are found. In addition, by changing the variable, the Holling-Tanner 

model was transformed into the studied Lienard equation.  

In article [7], a continuous analogue of strictly non-Volterian quadratic dynamic systems with continuous time and 

equilibrium points was studied, a phase portrait of the system was constructed, numerical solutions were found, and 

a comparative analysis with a particular solution of the system was carried out. In [8], fixed points and general 

solutions of a dynamical system with continuous time were found and their asymptotic behavior of trajectories was 

studied. 

If we analyze quadratic stochastic operators with discrete and continuous time, we will come to the conclusion that 

both have their advantages and disadvantages. Thus, dynamic systems with discrete time consider the states of 
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evolution or the trend of development of processes taking into account the initial state, ignoring the interaction 

between individuals. For example, a child's current performance score is related to his and his mother's score the 

month before. Discrete-time models treat this interaction between mother and child as if it ceases to exist between 

dimensions and as if they interact at several discrete moments rather than continuously.  

In reality, «mothers and children» do not cease to exist between classes ...». If these scores (the child's score and the 

mother's score) are imagined to represent two variables (perhaps monthly interactions between mother and child), 

then discrete-time approaches can lead to models that are theoretically interesting [9]. 

In [10], the flows of dynamic systems with continuous time, having the same number of equilibrium points and 

trajectories and not having a periodic orbit, were studied; they form an equivalence class under the condition of a 

topological conjugacy relation. It is proved that arbitrary two flows of the studied dynamical systems have the same 

dynamics in time and other properties, such as order isomorphism and homeomorphy. 

 [11-12] articles also studied population dynamics for the continuous time case of the model. According to the 

results obtained, mathematical models built on the basis of the system of ordinary differential equations considered 

in the articles do not give positive (since the reproduction process is discrete) results in representing the dynamics 

of seasonal reproduction of many other species. Mathematical models that represent these types of processes using 

a system of impulse ordinary differential equations [13] are the most preferred models and represent the process 

under study close to the real process. In particular, in biology, the mathematical model of population evolution is 

represented by quadratic stochastic operators [14].  

░ 3. Main Part 

The article, devoted to the study of the dynamics of a bipolar population [15], gives a definition of its mathematical 

model and presents representations of quadratic stochastic operators representing the population. 

The general evolution equation is constructed as follows. We assume that the population under consideration is 

two-sex.   {       } is a set of female type,   {      } is a set of male type.     is the population 

size. The state of the population is defined as the pair of probability distributions in the sets   and   for the pair  

            and            : 

     ∑  

 

   

         ∑  

 

   

    

Cartesian product of             and            dimensional simplex gives the state space of the 

population            . 

If, as a result of crossing    and natural selection in an arbitrary state          a single value            is 

determined in generation    then the differentiation of this population is called hereditary. 

            

the mapping       defined by the equation is called the evolution operator, and the equation is called the 

population evolution equation. This reflection becomes the following system of equations in coordinates: 
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We present information about the quadratic stochastic operator representing the population (two-gender 

population) introduced by Uzbek scientists [16]. Quadratic stochastic operators of a free population have the 

following meaning: we assume that the free population consists of   elements. In that case 

     {                         ̅̅ ̅̅̅ } ∑    

 

   

  

the set       is called a simplex of size. 

The quadratic stochastic operator, self-reflecting simplex     , has the form                  
  

∑        
 
               , where        is the heritability coefficient and 

        ∑      

 

     

                 

For           quadratic stochastic operator {    }              trajectory is found by the expression 

        (    )             

We assume that the state of   generation is      . Its next state is determined by the following formulas:  

  

{
 
 

 
   

  ∑      
   

   

     

           

  
  ∑      

   

   

     

           

 

Definition ([16]). Evolutionary operator   is called a quadratic Volterra-type stochastic operator if      
   

     

{   }               and      
   

      {   }              . 

Note that when deriving evolutionary equations, it was not assumed that differentiation was genotypic (although in 

applications this is the main case), but only the existence of certain coefficients of heredity and survival, which 

ensured the hereditary nature of differentiation. 

We study a generalized continuous-time analogue of one of the discrete-time quadratic stochastic operators 

representing a bipolar population, introduced in [16].  

Let's assume that      . Then the continuous time analogue of the discrete quadratic stochastic operator on the 

edge of the eighth square representing the population will be the following: 

{

 ̇                                          
 ̇                                         
 ̇                      

 ̇                               
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A generalized case of this system is the following 

{

 ̇                                          
 ̇                                          
 ̇                       

 ̇                                

                                                                          

Let's carry out a qualitative analysis of the system of equations, here           

From the conditions of the problem it follows that                                 and       

                     . If       , we get system (1). 

It is known that the equilibrium state of the dynamic system corresponds to the critical (singular, fixed) points of the 

differential equation, and the closed-phase curves correspond to its periodic solutions. 

(2) system has the following general solutions: 

   {

      
      
      

              

          {

      
      
      
        

    {

                     
                       

      
         

                         

     

{
 
 

 
 

                                        
                                        

      
                           

    
     
     

             

              

here              are non-negative fixed numbers,                  The solution of the system in case 

4 is more general than the other solutions. Given that the condition of the problem is                       

  (for the case     ), we get  

   
     

                                                                                         

and the solution will look like this: 

                                        {

                                              
                                             

      
                                 

       
                      

(  {

             
        
              
               

         )                                           

So, the general solution looks like this: 

                                                                         

{
 

 
                                 
                            

      
                    

       
           

                                                                                    

Let's study the case where     is divided into two:       and        In the first case, the solution of the 

system will have the following form: 

  {

                                 
                                
                                 

                

  {

      
      
     
      

     

{
 

 
                                  
                           

      
                     

       
           

                              



Irish Interdisciplinary Journal of Science & Research (IIJSR)  

Volume 7, Issue 4, Pages 77-86, October-December 2023 

ISSN: 2582-3981                                                                [82]                                                                             

Note 1. In (7) condition (4) is self-fulfilling. 

Now we see the case      . If we take                the system will look like this: 

{

 ̇                   
 ̇                    
 ̇          
 ̇                

 

This case has been fully studied above. 

Now we analyze the solution in case 4, where      It is theoretically important that         for the desired 

solution, since the solution tends to finite values. According to the condition of the problem, since      

                  it follows that                          . From (4) we find    

          ⁄                 ⁄ . From the condition of the problem, we get the following: 

  
   

   
     

   

   
    

We find that for                  for                . Now let's define the sign      . 

 
   

   
     

   

   
    

In the cases         and         there will be        . Here we can put equality on the one hand, 

since the case       is considered separately. Therefore, in         and        , the condition 

        is satisfied. 

The system has the following fixed points:                and      ⁄             

Considering that                , we find the fixed points                  and                   

when        However, without      the system will have only one fixed point                 . 

(2) using the linearity of the system, we determine that in the case of          is unstable,     is stable (but 

not asymptotically stable), and in the case of                      is a stable (but not asymptotically stable) 

point.  

The numerical solution of system (2) for the case       was found using the MathCAD mathematical system 

(Fig. 1, 2, 3, 4). The initial values were obtained as follows: 

   (

            
            
            
            

   

           
           
            
            

   

           
           
            
            

   

    
    
    
    

)  

herein                 
   

Graphs of numerical solutions are presented in Figures 1, 2, 3, 4. 
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Figure 1                                                                                    Figure   2 

 

Figure 3                                                                                    Figure   4 

 

Figure 5                                                                                    Figure  6 

      interval    time,       through         
     through         

     through         
     - 

defined through        

In the mathematical system MathCAD (2), analytical and numerical solutions of the system were compared. As a 

result, it was found that the mutual difference between the analytical and numerical solutions up to    does not 

exceed 0.001, and after     it coincides. For given initial values, it was observed that the solution tends to the 
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fixed point              The graphs in Figures 5-6 are drawn at the initial values                    

          . 

Where         is the numerical solution of the system,               is the analytic solutions,    and    are 

the programming steps. 

Now, for cases where     and      we look for (1) numerical solutions of the system.              and 

   (

           
           
          
          

   

           
           
            
            

   

          
          
             
             

   

    
    
    
    

) 

in the case of (1) we draw graphs of numerical solutions of the system (Graphs 7-10). 

Note 2. Other cases of   and   (for example,              etc.) are studied in the same way as mentioned 

above. It does not differ much from the case presented in the article. 

Note 3. Analyzing Figures 3-6, it was found that the solutions of system 1 tend to a fixed point at     at different 

initial values. This situation is not observed in Figures 9-12. In this case, depending on the values of   and    the 

value of    (time for the solution to reach a fixed point) changes. 

 

Figure 7                                                                                    Figure  8 

 

Figure 9                                                                                    Figure  10 



Irish Interdisciplinary Journal of Science & Research (IIJSR)  

Volume 7, Issue 4, Pages 77-86, October-December 2023 

ISSN: 2582-3981                                                                [85]                                                                             

 

Figure 11                                                                                   Figure  12 

(2) we compare analytic and numerical solutions of the system (4) condition (Graphs 11-12). Since the solutions 

      and       are completely superimposed, their graphs were not quoted. 

The graphs are drawn with the following initial conditions                        and              

Thus, the following theorem is proved.   

Theorem. 1
0
. The general solution of system (2) is in the form (3) and     is unstable,     is a stable (but not 

asymptotically stable) fixed point. 

2
0
. If               is taken into account and condition (4) is fulfilled, then  

   
    

        
    

(           )         

░ 4. Conclusion 

From the above, we can conclude that scientists often believe that in the biological models they study, it is mainly 

the «pull» equilibrium points that are important, since they can be observed by the real system under the influence 

of changes. This is also evident in these questions studied. 

Graph 10 also shows that the value of       is greater than 1. If the initial conditions and   and   are chosen in such 

a way that they satisfy relation (4), the condition of Theorem 2
0
 is also satisfied. 
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